skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Marfil, E"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. TOI-2015 is a known exoplanetary system around an M4 dwarf star, consisting of a transiting sub-Neptune planet in a 3.35-day orbital period, TOI-2015 b, accompanied by a non-transiting companion, TOI-2015 c. High-precision radial-velocity measurements were taken with the MAROON-X spectrograph, and high-precision photometric data were collected, primarily using the SPECULOOS, MUSCAT, TRAPPIST and LCOGT networks. We collected 63 transit light curves and 49 different transit epochs for TOI-2015 b. We recharacterized the target star by combining optical spectra obtained by the MAROON-X, Shane/KAST and IRTF/SpeX spectrographs, Bayesian model averaging (BMA) and spectral energy distribution (SED) analysis. The TOI-2015 host star is aK= 10.3 mag M4-type dwarf with a subsolar metallicity of [Fe/H] = −0.31 ± 0.16, and an effective temperature ofTeff≈ 3200 K. Our photodynamical analysis of the system strongly favors the 5:3 mean-motion resonance and in this scenario the planet b (TOI-2015 b) has an orbital period ofPb= 3.34 days, a mass ofMp= 9.02-0.36+0.32M, and a radius ofRp= 3.309-0.011+0.013R, resulting in a density ofρp= 0.25 ± 0.01ρ= 1.40 ± 0.06 g cm−3; this is indicative of a Neptune-like composition. Its transits exhibit large (> 1 hr) timing variations characteristic of an outer perturber in the system. We performed a global analysis of the high-resolution radial-velocity measurements, the photometric data, and the TTVs, and inferred that TOI-2015 hosts a second planet, TOI-2015 c, in a non-transiting configuration. Our analysis places it near a 5:3 resonance with an orbital period ofPc= 5.583 days and a mass ofMp= 8.91-0.40+0.38M. The dynamical configuration of TOI-2015 b and TOI-2015 c can be used to constrain the system’s planetary formation and migration history. Based on the mass-radius composition models, TOI-2015 b is a water-rich or rocky planet with a hydrogen-helium envelope. Moreover, TOI-2015 b has a high transmission-spectroscopic metric (TSM=149), making it a favorable target for future transmission spectroscopic observations with theJWSTto constrain the atmospheric composition of the planet. Such observations would also help to break the degeneracies in theoretical models of the planet’s interior structure. 
    more » « less
    Free, publicly-accessible full text available March 1, 2026
  2. Context . The Gl 486 system consists of a very nearby, relatively bright, weakly active M3.5 V star at just 8 pc with a warm transiting rocky planet of about 1.3 R ⊕ and 3.0 M ⊕ . It is ideal for both transmission and emission spectroscopy and for testing interior models of telluric planets. Aims . To prepare for future studies, we aim to thoroughly characterise the planetary system with new accurate and precise data collected with state-of-the-art photometers from space and spectrometers and interferometers from the ground. Methods . We collected light curves of seven new transits observed with the CHEOPS space mission and new radial velocities obtained with MAROON-X at the 8.1 m Gemini North telescope and CARMENES at the 3.5 m Calar Alto telescope, together with previously published spectroscopic and photometric data from the two spectrographs and TESS. We also performed near-infrared interferometric observations with the CHARA Array and new photometric monitoring with a suite of smaller telescopes (AstroLAB, LCOGT, OSN, TJO). This extraordinary and rich data set was the input for our comprehensive analysis. Results . From interferometry, we measure a limb-darkened disc angular size of the star Gl 486 at θ LDD = 0.390 ± 0.018 mas. Together with a corrected Gaia EDR3 parallax, we obtain a stellar radius R * = 0.339 ± 0.015 R ⊕ . We also measure a stellar rotation period at P rot = 49.9 ± 5.5 days, an upper limit to its XUV (5-920 A) flux informed by new Hubble /STIS data, and, for the first time, a variety of element abundances (Fe, Mg, Si, V, Sr, Zr, Rb) and C/O ratio. Moreover, we imposed restrictive constraints on the presence of additional components, either stellar or sub-stellar, in the system. With the input stellar parameters and the radial-velocity and transit data, we determine the radius and mass of the planet Gl 486 b at R p = 1.343 −0.062 +0.063 R ⊕ and M p = 3.00 −0.12 +0.13 M ⊕ , with relative uncertainties of the planet radius and mass of 4.7% and 4.2%, respectively. From the planet parameters and the stellar element abundances, we infer the most probable models of planet internal structure and composition, which are consistent with a relatively small metallic core with respect to the Earth, a deep silicate mantle, and a thin volatile upper layer. With all these ingredients, we outline prospects for Gl 486 b atmospheric studies, especially with forthcoming James Webb Space Telescope ( Webb ) observations. 
    more » « less